To access all features of this site, you must enable Javascript. Here are the instructions for enabling Javascript in your web browser.
To carry out their activities, Research Teams of the Frédéric Joliot Institute for Life Sciences have developed high-profile technological platforms in many areas : biomedical imaging, structural biology, metabolomics, High-Throughput screening, level 3 microbiological safety laboratory...
All the news of the Institute of life sciences Frédéric Joliot
News
A team from I2BC has studied the positioning of nucleosomes in the yeast S cerevisiae genome, using an original mathematical method to analyze next-generation sequencing data. This mapping highlights the role of chromatin remodeling complexes in nucleosome organization.
Teams from I2BC, Institut Curie and IRB shed light on how the human nuclease MRN works. Structural predictions obtained with AlphaFold2 and confirmed by in vitro and in vivo experiments show that the phosphorylated Sae2/CtIP protein forms a network of interactions with MRN that favours the removal of its autoinhibition.
A team from BioMaps (SHFJ) measures for the first time the in vivo local mechanical properties at play in a muscle (elasticity, anisotropy, non-linearity) using a non-invasive method, ultrasonic shear wave elastography. The originality of the approach lies in its ability to perform such measurements in a so complex tissue.
Using a range of spectroscopic techniques, researchers at I2BC in collaboration with ICMMO have elucidated the catalytic cycle of a bio-inspired iron porphyrin catalyst, which could form the basis of economically viable solutions for the conversion and recovery of CO2.
SCBM researchers have designed nanometric micelles that can be activated by light and constructed by self-assembly of amphiphiles derived from ferrocene, which carries a hidden therapeutic activity in the absence of activation.
A SIMoS team has made a significant breakthrough in understanding the cellular immune response to factor VIII, a protein essential for blood coagulation, by demonstrating for the first time the existence of human FVIII-specific regulatory T cells in the blood of healthy donors.
Researchers at BioMaps have developed a "re-bridging agent" for the radiolabelling of biomolecules containing disulphide bridges. Their strategy has enabled several molecules of therapeutic interest to be labelled with fluorine-18, copper-64 and zirconium-89.
Researchers from the AMIG team (I2BC department), in collaboration with the IRB (Switzerland), have modeled the interaction between HROB and the helicases MCM8-MCM9, some mutations of which predispose individuals to infertility or cancer. They demonstrate that HROB promotes the catalytic activity of the MCM8-MCM9 complex but does not play a role in its recruitment or stability.
A team from BioMaps (SHFJ), in partnership with the Gustave Roussy Institute, has used immunoPET imaging to assess the influence of tissue distribution on the efficacy of cancer immunotherapy, administered intra-tumor and intravenously in mice. Intratumoral administration is more effective and reduces overall exposure of organs at risk
A team from the I2BC, in collaboration with the Institut Curie and Soleil, has shown that the CAF-1 protein combines flexible regions and rigid modules in its spatial organisation to deposit histones on DNA and effectively couple this process to DNA synthesis.
Top page
CEA is a French government-funded technological research organisation in four main areas: low-carbon energies, defense and security, information technologies and health technologies. A prominent player in the European Research Area, it is involved in setting up collaborative projects with many partners around the world.