Résultat scientifique | Simulation & modélisation
Mécanique des fluides
Un papillon encore plus turbulent
bilderfix/iStock
Chapeau
En s'appuyant sur une expérience de laboratoire, des chercheurs de l'Iramis et du LSCE proposent un jeu de trois équations « simples » pour représenter un écoulement très turbulent. Ces équations conduisent à un comportement extrêmement chaotique qu'on pourrait qualifier de « super-effet papillon ». Un bon point de départ pour décrire des phénomènes atmosphériques complexes comme les nuages ou les précipitations !
Publié le 6 juillet 2017
Corps de texte
Comprendre la turbulence est un enjeu majeur pour la sécurité des transports aériens et maritimes, mais aussi en météorologie. Le mouvement d'un fluide peut être décrit par les équations de Navier-Stokes, dont les solutions peuvent être extrêmement complexes quand elles décrivent des phénomènes dynamiques sur plusieurs ordres de grandeur d'échelle spatiale, de quelques centièmes de millimètre à plusieurs centaines de mètres.
En 1963, le météorologue américain Edward Lorenz modélise la convection atmosphérique, sans turbulence, par trois équations déterministes. Celles-ci lui permettent de mettre en évidence pour la première fois l'effet papillon, signe d'un comportement chaotique illustré par cette interrogation : « le battement d'aile d'un papillon au Brésil peut-il déclencher une tornade au Texas ? » Cependant, pour les écoulements réels très fortement turbulents, les scientifiques n'ont pas réussi à trouver un modèle aussi simple que celui de Lorenz.
Pour relever ce défi, des chercheurs de l'Iramis et du LSCE ont analysé en détail une expérience de laboratoire, dite de von Karman, dans laquelle un écoulement très turbulent est produit par rotation de deux turbines dans un cylindre rempli d'eau. Ils montrent que la dynamique des tourbillons peut être décrite par un système de trois équations similaires à celles proposées par Lorenz, mais cette fois stochastiques.
Où se cachait donc la difficulté ? Jusqu'à présent, chaque vortex était décrit séparément. Or les petits vortex peuvent aussi être pris en compte comme une composante aléatoire capable d'influencer à chaque instant les grands vortex. Cette composante aléatoire introduit une nouvelle incertitude par rapport au chaos découvert dans le modèle initial de Lorenz, et renforce d'un degré supplémentaire l'effet papillon.
De tels modèles simplifiés pourraient être utilisés pour décrire la dynamique des écoulements turbulents naturels, comme les nuages et les précipitations en météorologie. La chasse aux « papillons » climatiques est désormais ouverte !
Haut de page