La couleur d'un laser
Elle est définie par le choix du milieu laser. Il existe des lasers de toutes les couleurs : rouge, bleu, vert… Certains d’entre eux sont même constitués de lumière invisible comme les ondes infrarouges ou ultraviolettes. Ces multiples couleurs font la beauté de nombreux spectacles son et lumière. La plupart des lasers ne peuvent émettre que sur une seule longueur d’onde. L’utilisation de cristaux possédant des propriétés optiques non linéaires permet de convertir la longueur d’onde d’un laser pour obtenir des faisceaux de longueur d’onde doublée ou triplée. Il existe de plus des lasers dont on peut faire varier continument la longueur d’onde sur une certaine plage. On dit qu’ils sont accordables. Leur milieu laser a longtemps été un liquide contenant des molécules de colorant qui, une fois excitées, ont la particularité d’émettre sur un grand intervalle de longueurs d’onde. Maintenant, ils tendent à être remplacés par les
oscillateurs paramétriques optiques (OPO) et les diodes laser accordables, présentant l’avantage d’éviter l’utilisation de solvants. Les diodes laser sont les sources les plus couramment utilisées actuellement. Leur rendement énergétique élevé et leur fabrication peu coûteuse ont permis leur industrialisation massive.
Réglage d’un laser à solide pompé par diodes de forte puissance, utilisé pour générer la lumière extrême UV (13,4 nm) pour des applications de photolithographie. © P.Stroppa /CEA
Mise en place de composants optiques d’un laser sur la Plate-forme Laser Femtoseconde Accordable (PLFA). © PF.Grosjean/CEA
Inspection d’un miroir en verre servant au transport des faisceaux lasers du laser Mégajoule (LMJ), et analyse des impacts ou défauts constatés.
© H.Raguet/Science&Avenir/CEA
La puissance d'un laser
La puissance se définit classiquement comme la quantité d’énergie émise par unité de temps. Un laser délivrant un joule pendant une seconde aura une puissance d’un watt. Dans le cas des lasers continus, l’étendue des puissances de sortie va classiquement de 1 mW pour des petites diodes laser, à 50 kW pour les lasers de soudage.
Dans le cas de lasers impulsionnels, il faut distinguer :
- la puissance moyenne délivrée, qui tient compte des intervalles de temps entre chaque impulsion,
- la puissance de crête, qui est la puissance atteinte lors d’une l’impulsion.
Ainsi, un laser d’un watt délivrant sa lumière de façon continue aura une puissance d’un watt ; mais s’il concentre une énergie d’un joule en une décharge lumineuse d’une milliseconde, sa puissance de crête va être multipliée par mille et atteindra un kilowatt.
En délivrant leur énergie sur des temps très courts (nanoseconde voire picoseconde ou même femtoseconde), certains lasers d’étude peuvent atteindre des puissances de crête extrêmement élevées (jusqu’à 10
petawatts).
Plus modeste, un laser industriel dédié au soudage, de puissance moyenne de 1 kW, dispose d’une puissance de crête de 25 kW.
L’intensité d'un laser
L’intensité, c’est la puissance par unité de surface, qui s’exprime en nombre de watts par centimètre carré (W/cm2). Par exemple, l’intensité du Soleil peut atteindre 0,1 W/cm2. En focalisant cette lumière avec une loupe, celle-ci est portée à 100 W/cm2, ce qui suffit pour enflammer une feuille de papier. Le diamètre des faisceaux de lumière émis par les lasers (plusieurs dizaines de mm pour les lasers industriels) est souvent trop grand et leur intensité trop faible pour une utilisation directe efficace. Il faut focaliser les faisceaux pour augmenter leur intensité. Dans certains lasers, la focalisation est obtenue par des systèmes optiques à lentilles. D’autres utilisent des dispositifs à miroirs, plus rarement des montages à réseau de diffraction focalisant.
Un laser de 20 W focalisé sur quelques micromètres produit une intensité de l’ordre du milliard de W/cm2. Avec un laser impulsionnel de quelques mJ, on atteint très facilement les centaines de milliards de W/cm2. La focalisation est alors obtenue par des systèmes optiques plus ou moins complexes, constitués de lentilles et de miroirs, qui sont adaptés aux longueurs d’onde et aux fortes énergies utilisées. La focalisation est, par exemple, indispensable pour les opérations industrielles de perçage, soudage et découpage. Elle est aussi utile pour les lasers de puissance utilisés par les chercheurs pour étudier l’interaction lumière-matière.
La cohérence d'un laser
La cohérence du laser regroupe les propriétés d’uni-directionnalité et de monophasage. C’est elle qui permet à la lumière laser de pouvoir être fortement concentrée, dans le temps et dans l’espace ; elle est souvent à la base des applications des lasers. Cette propriété va permettre le transfert et le transport d’informations comme pour la lecture des disques optiques ou les liaisons Internet, par faisceaux laser dans des fibres optiques. Les ondes lumineuses qui composent la lumière laser se propagent toutes dans la même direction, de manière parfaitement rectiligne.
Un faisceau laser est très peu divergent, ce qui le rend visible sur de grandes distances. Cette propriété est utilisée pour l’alignement des tracés de routes et de tunnels comme, par exemple, lors de la construction du tunnel sous la Manche ou de la tour Montparnasse. Les lasers servent aussi dans la télémétrie, c’est-à-dire la mesure de distances. Le faisceau laser atteint une cible, qui en renvoie une partie en sens inverse. La vitesse de la lumière étant connue, il est possible, en mesurant le temps mis par le faisceau laser pour faire l’aller-retour, de connaître la distance séparant la source laser d’un obstacle. Cette méthode a permis le calcul précis de la distance Terre-Lune. La diffusion par les poussières et les aérosols de l’atmosphère rend visible ce rayon lumineux jusque loin dans l’espace et en fait l’outil des spectacles laser.