Un peu de physique nucléaire
Le noyau d’un atome est formé de particules appelées « nucléons » (protons et neutrons), liées entre elles. Le nombre de protons, Z, et le nombre de neutrons, N, varient d’un noyau à l’autre, et toutes les combinaisons (Z, N) ne sont pas possibles.
Neutrons et protons sont liés entre eux par la force nucléaire forte, dont le rayon d’action, très faible, est de l’ordre du millionième de milliardième de mètre (10–15 m). Elle est donc maximale lorsque les nucléons sont au contact ou très proches. Cependant, les nucléons situés près de la surface extérieure du noyau sont moins entourés et donc moins liés que ceux de l’intérieur ; ce déficit d’interaction diminue leur énergie de liaison.
Les protons, dotés d’une charge électrique positive, se repoussent entre eux sous l’effet de la force électrostatique. Cela occasionne une nouvelle diminution de l’énergie de liaison du noyau. Pour limiter cet effet, les noyaux les plus lourds présentent un excès de neutrons, dont la charge électrique est nulle. Par exemple, le noyau du plomb possède 82 protons et 126 neutrons. En revanche, les noyaux plus légers que le calcium (Z = 20) contiennent à peu près autant de protons que de neutrons. La plupart des noyaux ont la propriété d’avoir un nombre pair de protons et deneutrons. Il faut égrainer la liste des noyaux jusqu’au magnésium pour en rencontrer un ayant un nombre impair de nucléons.
Il existe un lien étroit entre microcosme nucléaire et macrocosme astronomique.
Inventaire nucléaire
Quels sont les noyaux que l’on trouve dans l’Univers et en quelles quantités ?
Il est possible de se faire une idée raisonnable en analysant la lumière émise par les étoiles grâce à la spectroscopie. Inventée à la fin du XIXe siècle, cette technique permet d’accéder à leurs caractéristiques intrinsèques (comme leur température, leur luminosité ou leur composition), marquant la naissance de l’astrophysique moderne.
Vallée de la stabilité
Les 256 noyaux stables que dénombre la physique nucléaire occupent une région bien définie appelée «
vallée de stabilité ». Dans le prolongement de cette vallée, la répulsion électrostatique entre protons devient si forte qu’aucun noyau n’est stable au-delà du plomb (Z = 82). Là se trouvent des noyaux radioactifs naturels, dont certains comme le bismuth, le thorium ou l’uranium ont des durées de vie dépassant le milliard d’années.
Un exemple, le Soleil
Le Soleil est l’étoile de la Terre. Bien que distant de 150 000 000 km environ, il est facile à étudier.
Les proportions relatives des divers atomes qui le composent sont mesurées par l’analyse du spectre de sa photosphère (sa couche externe, lumineuse). Cela ne donne que la composition de cette région externe, mais les chercheurs considèrent qu’elle est quasi identique à celle du nuage à partir duquel cette étoile s’est formée, il y a 4,56 milliards d’années.
La composition de la photosphère solaire peut être comparée à celle des météorites, seconde source d’information sur la composition du nuage protosolaire, à condition de prendre en compte les éléments les plus volatils (hydrogène, hélium, azote, oxygène et néon par exemple), qui s’en sont en partie échappés depuis leur formation. De plus, l’analyse des météorites en laboratoire permet de déterminer la composition
isotopique de la matière du système solaire.
Ces analyses complémentaires fournissent la répartition des éléments et des isotopes caractérisant notre environnement local, véritable pierre de Rosette de l’astrophysique nucléaire.
La table de Mendeleïev
La table périodique des éléments de Mendeleïev permet de classer les différents éléments chimiques découverts à ce jour par nombre de protons dans le noyau, allant de 1 pour l’hydrogène à 92 pour l’uranium, et même plus pour des noyaux n’existant pas à l’état naturel et créés en laboratoire.
Elle spécifie les propriétés chimiques des éléments qui dépendent de leur nombre d’électrons. Dans l’Univers, les plus abondants sont, dans l’ordre décroissant, l’hydrogène et l’hélium, puis l’oxygène, le carbone, le néon, le fer, l’azote, le silicium, le magnésium et le soufre.
Astronomie et
astrophysique
L’astronomie traite de l’observation et du mouvement des objets célestes : Soleil, Lune, planètes, comètes, astéroïdes, étoiles. C’est, avec les mathématiques, la plus ancienne des sciences.
L’astrophysique étudie les propriétés physiques de ces objets, leur évolution et leur formation. Elle émerge à lafin du XIXe siècle.
Le diagramme d'abondance
Le diagramme d'abondance indique, pour chaque élément de la table périodique, la quantité trouvée dans le système solaire. Il est élaboré à partir de mesures et d’observations et est très précieux pour les astrophysiciens.
Sur cette échelle, le silicium, pris comme référence arbitraire, vaut un million.
Pour un million de noyaux de silicium, il y a dix milliards de noyaux d’hydrogène et les noyaux les plus simples, hydrogène et hélium, représentent à eux seuls 98 % de la masse du Soleil.
À partir du carbone, de l’azote et de l’oxygène, les noyaux sont de plus en plus rares, à l’exception notable du fer, dont le noyau est le plus robuste de la nature. S’il y a peu de lithium, béryllium et bore (Z = 3, 4 et 5) c’est que ces noyaux sont fragiles.
Ils ne sont pas produits par fusion thermonucléaire, mais par brisure des noyaux de carbone, d’azote et d’oxygène interstellaires sous l’impact de collisions avec les particules rapides du rayonnement cosmique galactique.
Bételgeuse est une supergéante rouge, dans la constellation d'Orion. C'est l'une des plus grandes étoiles connues. © L.Decin/ESA/Herschel/PACS
Alchimie stellaire
Une étoile s’accommode de sa perte d’énergie lumineuse en puisant dans ses ressources d’énergie nucléaire.
Il faut attendre le début du XXe siècle et le développement de la physique nucléaire pour que les astrophysiciens, qui cherchaient surtout à comprendre le mécanisme qui permettait à une étoile de briller durablement, répondent à la question : où se produisent les réactions nucléaires qui engendrent les noyaux ?
Une étoile est une sphère de gaz chaud dont la cohésion résulte de l’attraction gravitationnelle, qui tend à rapprocher le plus possible ses particules les unes des autres. L’étoile ne s’effondre pas sur elle-même, car la pression du gaz joue contre l’action de la gravité. Pour que cet équilibre soit stable, il faut que la pression augmente régulièrement avec la profondeur, de sorte que chaque couche pesante soit en équilibre entre une plus comprimée et une autre qui l’est moins. Comme un gaz comprimé s’échauffe, la matière stellaire est d’autant plus chaude qu’elle est profonde, et donc que sa pression est grande. Partant de quelques milliers de degrés en surface, la température peut atteindre, selon la masse de l’étoile, quelques dizaines à quelques centaines de millions de degrés dans les régions centrales.
Ce déséquilibre des températures entre le cœur et la surface engendre un transfert d’énergie qui prélève l’excès d’énergie thermique de la région chaude interne pour le céder à la région froide externe. En surface, ce flux d’énergie s’échappe, puis se dilue sous forme de rayonnement : l’étoile brille ; et ne peut briller durablement que si une source interne d’énergie vient compenser le rayonnement émis par la surface.
Les étoiles,
des réacteurs nucléaires
© Opixido/CEA
A la fin du XIXe siècle, aucune source d’énergie connue (gravitationnelle ou chimique) n’était capable d’expliquer que le Soleil ait pu briller plus d’un milliard d’années – âge que les géologues donnaient à la Terre – au rythme qui était observé. La solution fut apportée en 1921 par le physicien français Jean Perrin, suivi par l’Anglais Arthur Eddington, qui proposa les réactions nucléaires entre noyaux atomiques comme source de production d’énergie. Il estima que cette réserve d’énergie nucléaire était suffisante pour faire briller le Soleil pendant plusieurs milliards d’années, durée compatible avec l’âge de la Terre alors déterminé par les géologues. Cette idée fut développée quelques années plus tard par le physicien américain Hans Bethe, qui décrivit explicitement les réactions nucléaires qui devaient se produire au cœur du Soleil, travaux qui lui valurent le prix Nobel de physique en 1967.
La fusion est l’opération élémentaire d’un jeu de construction nucléaire qui permet de fabriquer tous les éléments. Si deux noyaux légers, comme ceux de l’hydrogène ou de l’hélium, fusionnent pour en former un autre plus lourd, cela dégage de l’énergie. Cette réaction est inhibée par la répulsion électrostatique entre noyaux, qui est d’autant plus forte que leur charge électrique est grande. Alliées à l'effet tunnel, les hautes températures se trouvant au cœur des étoiles peuvent vaincre cette répulsion.
Le centre du Soleil est la seule région où la température et la pression sont suffisamment élevées pour que ces réactions soient possibles. Elles transforment quatre noyaux d’hydrogène en un noyau d’hélium en libérant de l’énergie. Ce sont 619 Mt (millions de tonnes) d’hydrogène qui, chaque seconde, réagissent pour former 614,7 Mt d’hélium, la différence (environ 0,7 % de la masse initiale) étant transformée en énergie, qui compense celle qui s’échappe par la surface.
Finalement, durant la plus grande partie de sa vie, une étoile s’accommode de sa perte d’énergie lumineuse en puisant dans ses ressources d’énergie nucléaire.
La preuve par les neutrinos
Depuis les années 1960, des instruments sont capables de détecter directement certaines des particules élémentaires produites lors des réactions nucléaires se déroulant au cœur des étoiles. Ces neutrinos, particules de la même famille que l’électron, transportant de l’énergie et dont la masse est très faible, sont détectés sur Terre par les expériences souterraines Gallex en Europe, Superkamiokande au Japon, SNO au Canada et Borexino en Italie. La mesure du flux des neutrinos solaires a apporté la confirmation directe de l’existence des réactions de fusion nucléaire.
Pour l’expérience Superkamiokande, 13 000 photodétecteurs ont été installés dans une cuve d’acier de 39 mètres de diamètre et 42 mètres de haut. © Kamioka Observatory/ICRR/University ok Tokyo