You are here : Home > Launch of an ambitious scientific program for future generations of Li-ion batteries

Batteries

Launch of an ambitious scientific program for future generations of Li-ion batteries


​In line with the major challenge that the storing of electricity represents in the energy transition, the CEA is launching an extensive scientific program aimed at accelerating the development of Li-ion battery technology.

Published on 23 March 2020

The FOCUS program "Multiscale battery simulation applied to electrode materials" aims to develop a more predictive simulation approach in the field of Li-ion batteries. This approach is based on a strong coupling between physical modeling and experimental characterization. The simulation models and software developed within this program will be a complementary tool to the experience to accelerate the development and synthesis of more efficient, durable and safe materials and electrodes.

In this context, the CEA is launching fifteen theses and post-docs to enrich the skills invested in this ambitious project.

Li-ion batteries are complex systems involving multiple coupled physico-chemical and multi-scales phenomena. Integrating this multi-scale approach is essential to, in the upward direction, have less empirical and more predictive models based on the underlying physical phenomena, and in the downward direction, orient developments towards problems of interest at higher scales. If a predictive approach based on modeling and simulation is relevant at any scale to make improvements and innovations on Li-ion batteries, it is probably at the material scale that ruptures are most likely to emerge.

This is why the FOCUS program focuses on these scales and integrates two parallel and complementary paths. The first one aims to improve current technologies known and available through greater use of modeling and simulation in a process of development-characterization-modeling-simulation coupling and by ensuring consistency between the different scales. The second path aims to accelerate the development of new materials for the emergence of innovative technologies including solid electrolyte batteries. This second path will benefit from the contribution of the first one in terms of overall approach (link between scales, coupling, characterization, modeling, simulation, validation, etc.).

You would like to participate in this program, find the thesis subjects offered bellow. To your applications!

Title

Center

Aging of Li-ion batteries with a silicon anode studied by radiolysis

Saclay

Study of Lithium-plating phenomenon: Characterization and phenomenon simulation

Grenoble

Study of heterogeneous damage in Li-ion batteries related to cell design and development of associate ageing model at cell level

Grenoble

Modeling phase transitions in LIB active materials

Grenoble

Study of the Li intercalation mechanisms in battery electrodes by operando synchrotron X-ray (micro)diffraction

Grenoble

Study of cathode materials for lithium-ion batteries by experimental and theoretical soft and hard X-ray photo-emission spectroscopy

Grenoble

Theoretical and experimental study of the kinetics of lithiation of amorphous and cristalline silicon

Saclay

Operando characterization of the battery structure and interfaces using 3D synchrotron/neutron techniques

Grenoble

Study of the mechanical behaviour in cycling of a silicon/carbon composite particle used in Li-Ion cells

Cadarache

Selection and optimisation of silicon anodes for all solid state batteries

Grenoble

In-situ visualization and quantification of microstructural evolutions in all-solid batteries

Grenoble

 

Atomic-scale modelling of glass/crystal electrolyte materials for solide state batteries

Saclay

Multiscale modeling of lithium transport in solid and hybrid Li-ion electrolytes and their interfaces

Grenoble

Study of transport mechanisms of lithium in hybrid electrolytes for solid-state batteries

Grenoble

To apply, please refer to the link of the thesis subject on the INSTN website or contact Didier Jamet, FOCUS program pilot - didier.jamet@cea.fr

Download FOCUS program flyer

Top page