Electrochemical Characterizations of four Main Redox–metabolites of Pseudomonas Aeruginosa
Description | |
Date | |
Authors | Oziat J., Gougis M., Malliaras G.G., Mailley P. |
Year | 2017-0221 |
Source-Title | Electroanalysis |
Affiliations | CEA, Leti, MINATEC Campus, Univ. Grenoble-Alpes, Grenoble, France, Department of Bioelectronics, Ecole Nationale Supérieure des Mines de Saint-Etienne, Gardanne, France |
Abstract | Bacterial identification is of first importance in clinic nowadays. For few years, electrochemistry appears as a reliable route for characterizations outside of laboratories. Nowadays, researchers mainly focus on the opportunistic pathogen Pseudomonas aeruginosa because of its production of the Pyocyanin toxin which has an electrochemical case study behavior. Other P. aeruginosa secreted molecules are also studied in a lesser extent. This work deals with the systematic electrochemical characterizations in aprotic and protic solvents of 4 main metabolites of this bacterium in the view of multispecies detection of P. aeruginosa. We report here the behavior of the 2-Heptyl-4(1H)-quinolone (HHQ), Pseudomonas Quinolone Signal (PQS), Pyocyanin (PYO) and the 2?aminoacetophenone (2-AA). All the mentioned species are clearly visible by using electrochemical techniques (cyclic and square wave voltammetries). The 2 most suitable species for electrochemical detection appear to be PQS and PYO because of their detection at low potential. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim |
Author-Keywords | Electrochemistry, Metabolites detection, Pseudomonas aeruginosa, Quorum Sensing. |
Index-Keywords | |
ISSN | 10400397 |
Link | Link |