You are here : Home > Electronic structure and electron mobility in Si1- xGex nanowires

Publications

Electronic structure and electron mobility in Si1- xGex nanowires

Published on 29 March 2018
Electronic structure and electron mobility in Si1- xGex nanowires
Description
 
Date 
Authors
Mugny G., Li J., Triozon F., Niquet Y.-M., Rideau D., Delerue C.
Year2017-0118
Source-TitleApplied Physics Letters
Affiliations
STMicroelectronics, 850 rue J. Monnet, Crolles, France, CEA, LETI, Minatec Campus and Université Grenoble Alpes, Grenoble, France, Université Grenoble Alpes, Institut NÉEL, CNRS, Grenoble, France, CEA, INAC-MEM, L_Sim and Université Grenoble Alpes, Grenoble, France, Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 - IEMN, Lille, France
Abstract
We investigate the electronic structure and the electron mobility in Si1- xGex nanowires for relevant orientations ( ? 001 ? , ? 110 ?, and ? 111 ?) and diameters up to 8 nm based on atomistic models. The calculation of the electronic structure with random distribution of alloy atoms is compared to the virtual crystal approximation. The electronic properties such as the effective mass and the character of the lowest conduction subband are linked with the strong variations of the phonon-limited electron mobility with varying Ge concentrations. The effect of alloy disorder on the mobility is also discussed. © 2017 Author(s).
Author-Keywords
 
Index-Keywords
Crystal structure, Electron mobility, Electronic properties, Electronic structure, Germanium, Nanowires, Alloy disorder, Atomistic models, Effective mass, Ge concentrations, Random distribution, Subbands, Virtual crystal approximation, Crystal atomic structure
ISSN36951
LinkLink

Go back to list