Pour accéder à toutes les fonctionnalités de ce site, vous devez activer JavaScript. Voici les instructions pour activer JavaScript dans votre navigateur Web.
L'Institut de recherche interdisciplinaire de Grenoble (Irig) est un institut thématique de la Direction de la Recherche Fondamentale du CEA.
Notre Institut est composé de 5 départements
Les 10 Unités Mixtes de Recherches de l'Irig
Publications, Thèses soutenues, Prix et distinctions
Agenda
Séminaire invité Département Nanophysique (DEPHY)
Jeudi 07 juillet 2022 à 14:00, Salle de séminaire 445, bâtiment 1005, CEA-Grenoble (accès réservé aux personnes ayant un badge CEA)
The magnetic tunnel junction (MTJ), a device comprised of two ferromagnetic electrodes with a thin (about 1 nm) insulating tunnel barrier in between, was first proposed in a Ph.D. thesis by Michel Jullière in 1975 and reached widespread commercialization nearly 30 years later as the read sensor in hard disk drives. MTJs became essential for data storage in consumer laptop and desktop computers, early-generation iPods, and now in data centers that store the information in “the Cloud.” The application of MTJs has expanded even further, becoming the storage element in non-volatile memory, first in toggle magnetic random access memory (MRAM) used in automotive applications and outer space, and now in the production of spin-transfer torque MRAM as a replacement for embedded flash memory. As computing capabilities advance and drive demand for high-performance memory, innovation in MTJ continues in order to deliver faster, high-density MRAM that can support last-level cache, in-memory computing, and artificial intelligence. In this talk, I will describe the seminal discoveries that enabled MTJs for pervasive use in hard disk drives, MRAM, and magnetic sensors, such as the discovery of tunnel magneto-resistance (TMR) at room temperature, the invention of spin-transfer torque as the means to flip magnetization without a magnetic field, and the prediction and realization of high TMR using MgO tunnel barriers. As the demand for faster and higher density memory persists, still more breakthroughs are needed for MTJs contained in device pillars (or bits) just tens of nanometers in diameter. These advances require tuning of material properties at the atomic scale as well as across arrays of millions of bits in a memory chip. I will describe the magnetic properties of MTJs that are essential for high-performance MRAM, including perpendicular magnetic anisotropy, damping parameter, exchange constant, thermal stability factor, and TMR, and how to engineer these properties to deliver high spin-transfer torque efficiency and high data retention in spin-transfer torque MRAM devices. In addition, I will describe an innovative nanofabrication process for achieving dense arrays of MRAM bits with 50 nm full pitch. Plus d'information : https://www.spintec.fr/seminar-spins-bits-and-flips-essentials-for-high-density-magnetic-random-access-memory/
Haut de page
Acteur majeur de la recherche, du développement et de l'innovation, le CEA intervient dans quatre grands domaines : énergies bas carbone, défense et sécurité, technologies pour l’information et technologies pour la santé.