Pour accéder à toutes les fonctionnalités de ce site, vous devez activer JavaScript. Voici les instructions pour activer JavaScript dans votre navigateur Web.
L'Institut de recherche interdisciplinaire de Grenoble (Irig) est un institut thématique de la Direction de la Recherche Fondamentale du CEA.
Notre Institut est composé de 5 départements
Les 10 Unités Mixtes de Recherches de l'Irig
Publications, Thèses soutenues, Prix et distinctions
Agenda
Séminaire invité Département Nanophysique (DEPHY)
Mardi 15 mars 2022 à 11:15, Salle de séminaire 445, bâtiment 1005, CEA-Grenoble (accès réservé aux personnes ayant un badge CEA)
In industry, magnetic field sensors on the basis of the giant and even more the tunneling magnetoresistance effects (GMR, TMR) are still often treated as “new technology”, despite the fact that such are used in applications for more than 20 years now. However, this view is comprehensible when the operational environment is taken into account: GMR and TMR technology was first introduced in the data storage business as read heads in hard disk drives. It was continuously developed throughout the last decades to measure weakest magnetic stray fields from ever decreasing bits. On the one hand, data storage is a consumer application with a rated temperature operation range hardly exceeding 40°C. Moreover, the package is gas-tight and magnetically shielded, and thus, the sensor environment is perfectly controlled to allow a reliable operation. On the other hand, the sensor principle is the simplest as being used as a switch, where the magnetic properties, especially hysteresis, is not critical. Nowadays, applications as switch as well as angular sensors are commercialized in automotive and industrial environments, too. For those, the development mainly focused on sensor architecture stability, and the temperature requirements with a reliable operation up to 150°C were met finally. On the contrary, use cases, such as distance and current sensors, where the magnetic field sensor is not utilized in magnetic saturation but where the magnetization reversal of the sensing layer over the whole sensitive field range defines the characteristic, are still lacking. That is due to the present lack of a reliable control of the microstructure’s magnetic properties on wafer-scale, namely hysteresis, offset and non-linearity, where R&D is still required on the sensor microstructure architecture. Furthermore, magnetic functionalization by, e.g. laser annealing, and the application specific system design including packaging and the exact design of sensor elements as well as the reference magnetic field are R&D tasks of the near future. Plus d'information : https://www.spintec.fr/seminar-application-potential-of-gmr-tmr-magnetic-field-sensors-a-research-institute-perspective//
Haut de page
Acteur majeur de la recherche, du développement et de l'innovation, le CEA intervient dans quatre grands domaines : énergies bas carbone, défense et sécurité, technologies pour l’information et technologies pour la santé.