Pour accéder à toutes les fonctionnalités de ce site, vous devez activer JavaScript. Voici les instructions pour activer JavaScript dans votre navigateur Web.
L'Institut de recherche interdisciplinaire de Grenoble (Irig) est un institut thématique de la Direction de la Recherche Fondamentale du CEA.
Notre Institut est composé de 5 départements
Les 10 Unités Mixtes de Recherches de l'Irig
Publications, Thèses soutenues, Prix et distinctions
Agenda
Séminaire Département Nanophysique (DEPHY)
Vendredi 17 septembre 2021 à 11:00, Salle de séminaire 445, bâtiment 1005, CEA-Grenoble
Non-collinear antiferromagnets (NC-AFMs), new materials with non-collinear spin structure, offer a significant potential for spintronic applications [1]. They have vanishingly small magnetization and ultrafast spin dynamics. In addition, they allow for important counterparts to the effects considered to be exclusive to materials with net magnetization, such as the anomalous Hall effect (AHE) [2], magneto-optical Kerr effect [3] or anomalous Nernst effect (ANE) [4]. In this talk we are going to present our latest experiments in thermo-magneto-transport on epitaxial thin films of non-collinear antiferromagnets, with the emphasis on observation of the anomalous Nernst and Hall effect. The work is part of the MATHEEIAS (ANR-DFG) project. We will focus on two systems, kagome-lattice antiferromagnet Mn3NiN and multi-sublattice antiferromagnet Mn5Si3. Both the systems share certain similarities in relatively weak spin orbit coupling, where the magneto- and thermo-transport effects originate in Berry phase curvature of the band structure. However, while Mn3NiN is non-collinear in its low temperature AFM phase and ferrimagnetic above its Neel temperature for compressively strained films [5] , the Mn5Si3 changes its spin structure from the NC-AFM at low temperatures to collinear AFM at temperatures above roughly 90 K. The latter material belongs to the newly emerging class of “alter-magnets”, which display strong spontaneous Hall effect resulting solely from the Zeeman splitting [6,7]. We will show our results on magneto -thermo-transport obtained using two complementary methods. First, the global thermo-transport response is measured using a micro-patterned Hall bar device with platinum resistive heaters, inducing an in-plane thermal gradient. In addition, standard magneto-transport can be measured simultaneously within the same experiment. To add spatial resolution to the thermo-transport, the scanning thermal gradient microscopy [4] was used. A laser beam incident on micro-patterned device induces local thermal gradients, which enables to reveal domain structure of the particular material. By comparison of these methods, it is possible to quantify the size of the observed thermo-transport effects and to study their relation to the magneto-transport response. http://www.spintec.fr/seminar-magneto-thermo-transport-phenomena-in-antiferromagnets-with-non-collinear-spin-structure/
Haut de page
Acteur majeur de la recherche, du développement et de l'innovation, le CEA intervient dans quatre grands domaines : énergies bas carbone, défense et sécurité, technologies pour l’information et technologies pour la santé.