Pour accéder à toutes les fonctionnalités de ce site, vous devez activer JavaScript. Voici les instructions pour activer JavaScript dans votre navigateur Web.
L'Institut de recherche interdisciplinaire de Grenoble (Irig) est un institut thématique de la Direction de la Recherche Fondamentale du CEA.
Notre Institut est composé de 5 départements
Les 10 Unités Mixtes de Recherches de l'Irig
Publications, Thèses soutenues, Prix et distinctions
Agenda
Soutenance de thèse
Lundi 09 octobre 2023 à 09:30, Amphi de la maison Jean Kuntzann, 110 rue de la Chimie, Campus universitaire de Saint Martin D'Hères
Dans les cellules, le stress oxydant est défini comme le déséquilibre entre les espèces réactives de l’oxygène (ROS), et la quantité de molécules antioxydantes disponibles pour les dégrader. En effet, les ROS comme le superoxyde ou le radical hydroxyle sont des espèces très réactives, capables de dégrader le matériel biologique, ce qui peut conduire à l’apparition de certaines pathologies comme les maladies inflammatoires chroniques de l’intestin (MICI) ou les maladies neurodégénératives. Pour se protéger des effets délétères du superoxyde, les êtres vivants utilisent des enzymes performantes appelées les superoxydes dismutases (SOD), qui catalysent la dismutation du superoxyde en deux espèces moins réactives : le dioxygène et le peroxyde d’hydrogène. La nickel superoxyde dismutase (NiSOD) est l’une de ces enzymes, exclusivement présente chez les procaryotes dont certaines bactéries pathogènes. Ainsi, comprendre le mécanisme par lequel la NiSOD protège ces bactéries est une approche prometteuse pour l’élaboration de composés antibiotiques. D’autre part, l’efficacité de cette enzyme est telle qu’elle constitue une source d’inspiration pour le développement de composés antioxydants dans une approche thérapeutique contre les maladies liées au stress oxydant. L’objectif de ce travail de thèse a donc consisté à développer des complexes biomimétiques, inspirés du site actif de la NiSOD, pour en reproduire l’activité. Ces complexes sont basés sur une plateforme pseudo-ATCUN (Amino-Terminal CuII and NiII binding motif), capable de mimer la géométrie du NiII dans le site actif de l’enzyme. Les résultats obtenus ont permis d’identifier deux intermédiaires réactionnels formés lors de la dismutation du superoxyde par l’un de ces complexes, apportant des informations pour l’élucidation du mécanisme de l’enzyme. D’autre part, suite à l’identification de paramètres augmentant l’activité SOD, nous avons développé des complexes très performants, qui sont susceptibles d’exercer une action antioxydante dans les cellules.
Haut de page
Acteur majeur de la recherche, du développement et de l'innovation, le CEA intervient dans quatre grands domaines : énergies bas carbone, défense et sécurité, technologies pour l’information et technologies pour la santé.