Pour accéder à toutes les fonctionnalités de ce site, vous devez activer JavaScript. Voici les instructions pour activer JavaScript dans votre navigateur Web.
L'Institut de recherche interdisciplinaire de Grenoble (Irig) est un institut thématique de la Direction de la Recherche Fondamentale du CEA.
Notre Institut est composé de 5 départements
Les 10 Unités Mixtes de Recherches de l'Irig
Publications, Thèses soutenues, Prix et distinctions
Agenda
Soutenance de thèse
Mercredi 25 novembre 2020 à 14:00, Visioconférence
Les bits quantiques (qubits) de spin sont des dispositifs dans lesquels l'information est stockée comme une superposition cohérente des deux états de spin d'une particule. Une des perspectives de ces dispositifs est d'exploiter le parallélisme massif permis par une telle superposition de solutions. Le CEA Grenoble étudie notamment des qubits de spin de trou dans le silicium, car leur manipulation électrique est plus facile que celle des qubits d'électrons grâce au couplage spin-orbite fort dans les bandes de valence. Cette thèse porte ainsi sur la modélisation de la manipulation électrique de ces qubits de trous. Tout d'abord, nous introduisons les méthodes k.p décrivant la structure des bandes de valence du silicium, et qui permettent de construire des modèles analytiques et numériques des qubits. Puis nous présentons les expériences menées au CEA Grenoble sur ces qubits dérivés des technologies CMOS. Ces expériences mettent en évidence les fortes anisotropies magnétiques des fréquences de Larmor et de Rabi, qui caractérisent respectivement la dynamique et la manipulation du qubit. Nous introduisons un formalisme de "matrice gyromagnétique" qui permet de décrire complètement ces deux fréquences. De plus, nous montrons comment les symétries impactent la forme de cette matrice, et comment elles expliquent l'anisotropie magnétique des qubits. Ensuite, nous identifions grâce à la simulation numérique les mécanismes microscopiques à l'oeuvre lors de la manipulation électrique du spin, ce qui nous permet de construire un modèle analytique minimal du qubit de trou. Ce modèle démontre que le silicium est un matériau hôte idéal pour un tel qubit grâce à la forte anisotropie de ses bandes de valence. Pour terminer, nous étudions numériquement l'impact des phonons sur le temps de vie des qubits de trou. Nous montrons que le temps de relaxation est suffisamment grand pour effectuer plusieurs dizaines de milliers d'opérations malgré le couplage spin-orbite fort.
Haut de page
Acteur majeur de la recherche, du développement et de l'innovation, le CEA intervient dans quatre grands domaines : énergies bas carbone, défense et sécurité, technologies pour l’information et technologies pour la santé.