Pour accéder à toutes les fonctionnalités de ce site, vous devez activer JavaScript. Voici les instructions pour activer JavaScript dans votre navigateur Web.
L'Institut de recherche interdisciplinaire de Grenoble (Irig) est un institut thématique de la Direction de la Recherche Fondamentale du CEA.
Notre Institut est composé de 5 départements
Les 10 Unités Mixtes de Recherches de l'Irig
Publications, Thèses soutenues, Prix et distinctions
Agenda
Soutenance HDR
Vendredi 01 décembre 2023 à 10:00, Salle de séminaire 445, bâtiment 1005, CEA Grenoble
Magnetic skyrmions are chiral spin textures that gathered a lot of attention due to their topological properties, their nanometer size and the possibility to efficiently move them with currents. In our era of information, their use as data bits for ultrafast and power-efficient devices has opened many possibilities of applications in spintronics memories or logic, but also in non conventionnal computing, such as probabilistic and ultralow power computing or neuromorphic computing. The chiral exchange called Dzyaloshinskii-Moryia interaction (DMI) is a key parameter to stabilize these quasi-particles. In heavy metal/ferromagnet/oxide ultrathin trilayers, DMI has an interfacial origin, similarly to surface magnetic anisotropy, and it is thus very sensitive to interface quality and material thicknesses. In this habilitation, I present some results we obtained at Spintec, in collaboration with other teams about the stabilization and manipulation of magnetic skyrmions in heavy metal/ferromagnet/oxide trilayers. We performed a fine tuning of material parameters using crossed double wedges which allows to vary both the ferromagnetic thickness and the oxidation state at the ferromagnet/oxide interface. Skyrmion phases are obtained in perpendicular magnetic samples, when domain wall energy is decreased due to the vicinity of a transition, either towards paramagnetic phase or towards in-plane anisotropy behaviour. By finely controlling material parameters, we have changed skyrmion speed and trajectories by the control of the sign of DMI, which inverts skyrmion chirality. Using a gate voltage, we have also shown that it modifies not only anisotropy, magnetization and Curie temperature, but also Dzyaloshinskii-Moriya interaction. This allowed us, in Pt/Co/AlOx and Ta/FeCoB/TaOx stacks, to control skyrmion stability and realise a room temperature skyrmion switch. Finally, in Ta/FeCoB/TaOx we have used a gate-voltage to invert the sign of the DMI and thus locally and dynamically reverse skyrmion chirality. Hence, this local, persistent and reversible chirality reversal allows the inversion of the motion of skyrmion under a current, offering a new degree of freedom to individually manipulate skyrmions with low power. More information :https://www.spintec.fr/hdr-defense-tuning-magnetic-skyrmion-stability-and-chirality-by-materials-and-gate-voltage/ Here is the zoom link to participate virtually : https://univ-grenoble-alpes-fr.zoom.us/j/6286678422
Haut de page
Acteur majeur de la recherche, du développement et de l'innovation, le CEA intervient dans quatre grands domaines : énergies bas carbone, défense et sécurité, technologies pour l’information et technologies pour la santé.