

SALAS SALAS

Chiplet-based Optical Network on Chip (ONoC)

What it is

Starac is a system-in-package demonstrator with a photonic interposer that enables all-to-all optical communications between chiplets. This approach to on-chip communications is ideal for increasingly complex systems-in-package with more and more chiplets or for chips made on increasingly large wafers.

The demonstrator features:

- Multiple compute chiplets
- I/O interface chiplets (drivers, data serialization, flow control, arbitration, routing, plus any application protocols)
- An optical network on chip (the photonic interposer)
- Rerouting BEOL for sideband signaling (synchronization)

What it can do

This innovation addresses a variety of system-level computing challenges. It is of interest to large tech firms or chip makers, startups, datacenters, and other organizations with high-performance or exascale compute projects.

- CEA-Leti can transfer a complete system or discrete technology bricks and manufacture test batches.
- Companies can co-develop hardware and architectures with CEA-Leti for a unique system tailored to their needs.

CEA-Leti brings its silicon photonic, very-large-scale integration, and architecture and circuit design expertise to R&D partnerships on this technology.

What makes it unique

With passive interposers, communication between chips is limited to "nextdoor neighbors." With Starac's photonic interposer, efficient communication between faraway chips becomes possible thanks to:

- A comprehensive state-of-the-art 3D silicon photonic platform
- · A world-first optical network on chip topology
- Electro-optical drivers with 5X greater energy efficiency than CMOS routing
- A low-latency, non-blocking protocol for integration with compute that is 4X more efficient than synchronous CMOS transfers
- · An optical routing architecture that would be impossible on a passive interposer

Cross-section of silicon photonic interposer 🔻

What's next

The current demonstrator is the result of four years of research at CEA-Leti and CEA-List. Further development work will focus on scaling up the 3D and photonic technology platforms to 300 mm as part of the EU Prevail project.

Publications

- Y. Thonnart et al., "POPSTAR: a Robust Modular Optical NoC Architecture for Chiplet-based 3D Integrated Systems," Proc. DATE, 2020, p. 6
- D. Saint Patrice et al, "Process Integration of Photonic Interposer for Chiplet-Based 3D Systems," ECTC 2023

CEA-Leti, technology research institute

17 avenue des Martyrs, 38054 Grenoble Cedex 9, France cea-leti.com

At a glance

- 4 chiplets, 16 cores each
- 6 electro-optical drivers
- Silicon photonic interposer:
 - Ø10 x 100 μm mid-process TSVs
 - 4 front-side routing levels
- TRL: 4

Interested in this technology?

CEA-Leti contact:

Sylvie Joly <u>Sylvie-j.joly@cea.fr</u> +33 438 783 946

CEA-List contact: **Denis Dutoit** <u>denis.dutoit@cea.fr</u> +33 438 786 258

